I legami deboli e forti determinano la struttura delle macromolecola: le proteine
Le proteine rivestono ruoli molto importanti nel funzionamento di una cellula. Tra le diverse classi di proteine due assumono particolarmente rilievo: una è quella delle proteine catalitiche (enzimi), l'altra è quella delle proteine strutturali. Gli enzimi sono catalizzatori dell'ampia varietà di reazioni chimiche che avvengono nelle cellule. Le proteine strutturali, invece, costituiscono parte integrante di strutture cellulari, quali membrane, pareti o componenti citoplasmatiche. Le proteine, comunque, sono polimeri costituiti da amminoacidi legati covalentemente grazie a legami peptidici. Due amminoacidi legati tra loro costituiscono un dipeptide, tre un tripeptide, e così via. Quando una catena peptidica comprende molti amminoacidi si parla di polipeptide. Una proteina è costituita da uno o più polipeptidi. In generale, nelle proteine naturali si riscontrano comunemente 20 amminoacidi e il corpo umano può sintetizzarli tutti tranne nove. Quest'ultimi devono essere ricavati dalle proteine nella dieta e sono detti amminoacidi essenziali. Tutti gli amminoacidi, comunque, hanno una struttura di base simile: un atomo di carbonio centrale è legato ad un atomo di idrogeno, un gruppo amminico (-NH2) , un gruppo carbossilico (-COOH) e un gruppo di atomi chiamato “R” che è differente in ogni amminoacido. La struttura primaria di un polipeptide si identifica nella successione lineare degli amminoacidi che lo compongono. L'interazione tra i gruppi R dei singoli amminoacidi in un polipeptide costringe la molecola a torcersi e a ripiegarsi nello spazio in maniera specifica. Ciò porta alla formazione di strutture secondarie, come le α-eliche e i foglietti β. Una volta raggiunto un livello stabile di struttura secondaria, la catena polipeptidica continua a ripiegarsi, tentando di formare una molecola ancora più stabile. Questo processo di ripiegamento (folding) conduce alla struttura terziaria. Le proteine vengono a questo punto raggruppate in due grandi categorie: fibrose e globulari. Le prime sono insolubili in acqua e formano importanti componenti strutturali di cellule e tessuti (il collagene o la cheratina), mentre le seconde sono solubili in acqua e agiscono come trasportatrici dei lipidi insolubili nel sangue legandosi ad essi e rendendoli solubili. Comunque, la struttura terziaria finisce con l'esporre particolari regioni, e/o formare solchi o tasche nella molecola che assumono importanza per l'interazione con altre molecole. Bisogna ricordare che quando una proteina è costituita da due o più polipeptidi, e molte proteine lo sono, si utilizza il termine struttura quaternaria. Così quando una proteine è costituita da subunità identiche si parla di omodimero altrimenti di eterodimero.
Continua a leggere:
- Successivo: Caratteristiche strutturali del DNA
- Precedente: L'importanza dei legami forti nei sistemi biologici
Dettagli appunto:
- Autore: Domenico Azarnia Tehran
- Università: Università degli Studi di Roma La Sapienza
- Facoltà: Scienze Matematiche, Fisiche e Naturali
- Corso: Scienze Biologiche
- Esame: Biologia molecolare
- Titolo del libro: Il Gene VIII
- Autore del libro: Benjamin Lewin
- Editore: Zanichelli
- Anno pubblicazione: 2007
Altri appunti correlati:
- Biologia applicata
- Biochimica
- Citogenetica
- Elementi di virologia molecolare
- Biotecnologie microbiche e ambientali
Per approfondire questo argomento, consulta le Tesi:
- DNA computing per la risoluzione di problemi NP-completi e per la costruzione di una macchina di Turing universale
- The role of CARMA2/CARD14 in NF-kB activation signalling
- Molecular Evolution of Human Cancer Genes MDS2 and TCL6
- Un ambiente informatica per la valutazione dei geni rilevanti in un processo di valutazione di microarray dataset
- Studio e sviluppo di metodi robusti per la validazione automatica di miRNA
Puoi scaricare gratuitamente questo riassunto in versione integrale.