Skip to content

Oxidative dehydrogenation of ethane in short contact time reactors

Oxidative dehydrogenation of ethane at short contact times in the last years has been proven to be effective in achieving high yields and selectivities to ethylene. Nevertheless, a number of issues remains unresolved that we discuss in Chapter 1.
In Chapter 2 we try to provide insights into the role of the catalyst. To do this, we propose a novel non-noble metal catalyst alternative to Pt, which until now is the only reliable catalyst for performance and lifetime. LaMnO3-based catalysts are cheaper than Pt and more thermally stable, and above all perform better than the noble metal. From the experimental results in short contact time reactors we have seen higher ethane conversion and ethylene selectivity on LaMnO3 under a wide range of conditions.
The role of the catalyst was further investigated by comparison with a blank reactor. Both experimental results and numerical simulations showed that the catalyst is important not only as ignitor to sustain gas phase reaction and to limit their extent to a well defined length, but also to produce the heat to drive the homogeneous dehydrogenation reactions by combustion to CO2 rather than to CO, thus sacrificing less ethane.
In Chapter 3 we addressed the investigation of different catalysts, alternative to noble metals. We studied mixed catalysts, where Pt is substituted into the perovskite structure, and Pt/CeO2. Experimental results showed good performance of substituted perovskite for the ODH process, as high as on Pt/Sn, but without the highly volatile Sn. Experimental results also suggested that a catalyst suitable for this process is required to oxidize C2H6 under fuel-rich conditions preferentially to CO2 and H2O rather than to syngas. Thus we interpreted the experimental results in terms of C and H oxidation and built a surface mechanism based on these considerations.
In Chapter 4 the catalyst supports were object of our investigation. We explained the experimentally observed differences among ceramic supports commonly used in short contact time reactors, with the estimation of gas dispersion and in terms of specific geometric surface and pore size. Also the effect of washcoat was critically evaluated.
In Chapter 5 we investigated the effect of the main operating parameters of the process, such as C2H6/O2, dilution, preheat temperature and flow rate. Particular attention was devoted to fuel addition. As alternative to H2, we proposed CO addition, which on a suitable catalyst active in CO oxidation, such as LaMnO3, yields to significantly improvements in ethane conversion (~10%) and ethylene selectivity (~10%). Also the transient behavior of the system was followed and coke formation investigated.
Finally, in Chapter 6 we used a mathematical model to provide deeper understanding of the process. With a purely homogeneous model we studied ethylene formation at short contact times, together with the formation of undesired PAH, and the effect of O2. Oxygen presence is important to boost the kinetics of ethylene formation and to provide the heat to drive an autothermal process.
With a hetero-homogeneous 2-D model, we tried to assess the concurrent phenomena of gas-phase reactions, mass transfer and surface reactions occurring in the system. We proposed a three-zone model, where the first zone is dominated by heterogeneous reactions producing heat to increase gas temperature, in the second zone, still rich in oxygen, hetero-homogeneous reactions occur, and most of ethylene is formed, and in the third one, when homogeneous reactions are faster than mass transfer rate because of temperature, purely homogeneous reactions occur. We also studied the hetero-homogeneous model parametrically with the surface reaction rate and the inlet temperature.
In chapter 7 we conclude with a summary of the results.

CONSULTA INTEGRALMENTE QUESTA TESI

La consultazione è esclusivamente in formato digitale .PDF

Acquista
Mostra/Nascondi contenuto.
Chapter 1 Introduction 1 Chapter 1 Introduction 1.1 Ethylene production Ethylene (C 2 H 4 ) is an organic molecule where the 2 carbon atoms are connected by a double bond, which causes the molecule to be highly reactive towards the reactions of halogen addition, hydration and polymerization (Solomons, 1976). Ethylene is the largest-volume petrochemical produced worldwide, but has no direct end uses. Half of the ethylene produced is polymerized to polyethylene, through high or low pressure processes. The remaining half is transformed into chemicals, such as ethylene glycol, oxirane, styrene, ethanol, 1,2-dichloro ethane, acetaldehyde and vinyl acetate. The extremely high versatility of ethylene, due to the chemical properties determined by its double bond, puts such molecule as building block in a large range of products, above all in the field of the fine chemicals. Currently, ethylene is produced by steam cracking in furnace reactors, accordingly to a well established technology, which was constantly improved since the 1940s, when U.S. oil and chemical company began to produce it from ethane obtained from refinery by-product streams and from natural gas. Today, various feedstocks are employed for ethylene production, from ethane to naphta, to LPG, to fuel oil, according to the convenience of the locations and the cost of the raw materials. For instance, in the U.S. ethane is the main feedstock, since it is largely available, while in Europe and Japan, where natural gas is more expensive, the fuel feeds are mainly constituted by light naphtas (Kirk-Othmer, 1978). Ethylene is produced by steam cracking, as sketched in Fig. 1.1. As reported in the Kirk-Othmer Encyclopedia, a hydrocarbon stream is heated and mixed with steam to incipient cracking temperature (500-650°C) before entering a fired tubular reactor (radiant tube or coil), where under controlled residence time, temperature profile and partial pressure is heated to 750-875°C. Saturated hydrocarbons crack into smaller molecules, amongst which ethylene, other olefins and diolefins are the major products. The steam cracking of saturated hydrocarbons to olefins is highly endothermic and requires high energy input rates. On leaving the fired tubular reactor, the products are cooled immediately to 550-650°C to prevent degradation by secondary reactions. These gases are then separated into the desired products. Large ethylene yields require high temperature, short residence times and low hydrocarbon pressure in the reactor. Fast and efficient heat transfer is achieved in the furnace,

CONSULTA INTEGRALMENTE QUESTA TESI

La consultazione è esclusivamente in formato digitale .PDF

Acquista
Il miglior software antiplagio

L'unico servizio antiplagio competitivo nel prezzo che garantisce l'aiuto della nostra redazione nel controllo dei risultati.
Analisi sicura e anonima al 100%!
Ottieni un Certificato Antiplagio dopo la valutazione.

Informazioni tesi

  Autore: Francesco Donsì
  Tipo: Tesi di Dottorato
Dottorato in Dottorato di Ricerca in Ingegneria Chimica
Anno: 2002
Docente/Relatore: Gennaro Russo
Correlatore: Lanny D.SchmidtPieroSalatino
Istituito da: Università degli Studi di Napoli
Dipartimento: Ingegneria Chimica
  Lingua: Inglese
  Num. pagine: 194

FAQ

Per consultare la tesi è necessario essere registrati e acquistare la consultazione integrale del file, al costo di 29,89€.
Il pagamento può essere effettuato tramite carta di credito/carta prepagata, PayPal, bonifico bancario.
Confermato il pagamento si potrà consultare i file esclusivamente in formato .PDF accedendo alla propria Home Personale. Si potrà quindi procedere a salvare o stampare il file.
Maggiori informazioni
Ingiustamente snobbata durante le ricerche bibliografiche, una tesi di laurea si rivela decisamente utile:
  • perché affronta un singolo argomento in modo sintetico e specifico come altri testi non fanno;
  • perché è un lavoro originale che si basa su una ricerca bibliografica accurata;
  • perché, a differenza di altri materiali che puoi reperire online, una tesi di laurea è stata verificata da un docente universitario e dalla commissione in sede d'esame. La nostra redazione inoltre controlla prima della pubblicazione la completezza dei materiali e, dal 2009, anche l'originalità della tesi attraverso il software antiplagio Compilatio.net.
  • L'utilizzo della consultazione integrale della tesi da parte dell'Utente che ne acquista il diritto è da considerarsi esclusivamente privato.
  • Nel caso in cui l’utente che consulta la tesi volesse citarne alcune parti, dovrà inserire correttamente la fonte, come si cita un qualsiasi altro testo di riferimento bibliografico.
  • L'Utente è l'unico ed esclusivo responsabile del materiale di cui acquista il diritto alla consultazione. Si impegna a non divulgare a mezzo stampa, editoria in genere, televisione, radio, Internet e/o qualsiasi altro mezzo divulgativo esistente o che venisse inventato, il contenuto della tesi che consulta o stralci della medesima. Verrà perseguito legalmente nel caso di riproduzione totale e/o parziale su qualsiasi mezzo e/o su qualsiasi supporto, nel caso di divulgazione nonché nel caso di ricavo economico derivante dallo sfruttamento del diritto acquisito.
L'obiettivo di Tesionline è quello di rendere accessibile a una platea il più possibile vasta il patrimonio di cultura e conoscenza contenuto nelle tesi.
Per raggiungerlo, è fondamentale superare la barriera rappresentata dalla lingua. Ecco perché cerchiamo persone disponibili ad effettuare la traduzione delle tesi pubblicate nel nostro sito.

Scopri come funziona »

DUBBI? Contattaci

Contatta la redazione a
[email protected]

Ci trovi su Skype (redazione_tesi)
dalle 9:00 alle 13:00

Oppure vieni a trovarci su

Parole chiave

catalysis
ethane
ethylene
foam monoliths
honeycomb monoliths
mathematical model
oxidative dehydrogenation
short contact times
structured reactors

Tesi correlate


Non hai trovato quello che cercavi?


Abbiamo più di 45.000 Tesi di Laurea: cerca nel nostro database

Oppure consulta la sezione dedicata ad appunti universitari selezionati e pubblicati dalla nostra redazione

Ottimizza la tua ricerca:

  • individua con precisione le parole chiave specifiche della tua ricerca
  • elimina i termini non significativi (aggettivi, articoli, avverbi...)
  • se non hai risultati amplia la ricerca con termini via via più generici (ad esempio da "anziano oncologico" a "paziente oncologico")
  • utilizza la ricerca avanzata
  • utilizza gli operatori booleani (and, or, "")

Idee per la tesi?

Scopri le migliori tesi scelte da noi sugli argomenti recenti


Come si scrive una tesi di laurea?


A quale cattedra chiedere la tesi? Quale sarà il docente più disponibile? Quale l'argomento più interessante per me? ...e quale quello più interessante per il mondo del lavoro?

Scarica gratuitamente la nostra guida "Come si scrive una tesi di laurea" e iscriviti alla newsletter per ricevere consigli e materiale utile.


La tesi l'ho già scritta,
ora cosa ne faccio?


La tua tesi ti ha aiutato ad ottenere quel sudato titolo di studio, ma può darti molto di più: ti differenzia dai tuoi colleghi universitari, mostra i tuoi interessi ed è un lavoro di ricerca unico, che può essere utile anche ad altri.

Il nostro consiglio è di non sprecare tutto questo lavoro:

È ora di pubblicare la tesi