Skip to content

Luci e ombre sulle coniche

Dagli inviluppi alle coniche

L'ultima tecnica per costruire le coniche non prevedeva l'utilizzo di macchine e il lavoro di gruppo, ma un lavoro individuale: ad ogni studente e' stato chiesto di disegnare una circonferenza e un punto all'interno. Il passo successivo consisteva nell'eseguire tante piegature, portando un punto della circonferenza a coincidere
con il punto disegnato in precedenza. Si venivano a creare tante rette che, intuitivamente, risultavano essere tangenti ad un'ellisse. Piu' piegature venivano fatte piu' facilmente si aveva tale intuizione. In generale tutti si sono accorti che la conica risultante era un'ellisse.
A questo punto gli studenti sono stati invitati a dimostrare di aver ottenuto e ettivamente un'ellisse. Lo sviluppo della conica in questa maniera non canonica ha creato qualche di colta': in entrambe le classi si e' capito facilmente che i due fuochi dell'ellisse fossero il centro e il punto all'interno della circon-
ferenza, ma riuscire a provare che la somma di due segmenti fosse costante e' risultato un ostacolo complicato. Infatti, mentre nelle precedenti esperienze si evidenziavano subito con facilita' i punti e i segmenti che si venivano a formare e permettevano di dimostrare quanto voluto, stavolta tali entita' non erano cosi' semplici da individuare.
Dopo alcuni suggerimenti per la partenza, sono riusciti a farcela autonomamente:
Dimostrazione. Sia P il punto interno alla circonferenza; sia B il punto appartenente alla circonferenza. Piegando il foglio in modo tale che B vada a coincidere con P si crea una retta. Tale retta e' l'asse del segmento BP e risulta essere tangente, per costruzione, all'ellisse. Sia H il punto medio del segmento BP; naturalmente H appartiene all'asse.Sia K il punto in cui il raggio OB interseca l'asse. Si puo' allora a
ermare che i due triangoli HPK e BHK sono uguali, avendo due lati uguali (HK e' in comune, inoltre BH=HP) e l'angolo tra di essi compreso uguale.
Da cui OK+KP=OK+KB=raggio del cerchio. Per cui la quantita' OK+KP rimane costante, il che ci permette di a ermare che abbiamo ottenuto un'ellisse.

Questo brano è tratto dalla tesi:

Luci e ombre sulle coniche

CONSULTA INTEGRALMENTE QUESTA TESI

La consultazione è esclusivamente in formato digitale .PDF

Acquista

Informazioni tesi

  Autore: Daniele Masini
  Tipo: Laurea I ciclo (triennale)
  Anno: 2009-10
  Università: Università degli Studi di Firenze
  Facoltà: Scienze Matematiche, Fisiche e Naturali
  Corso: Scienze matematiche
  Relatore: Riccardo Ricci
  Lingua: Italiano
  Num. pagine: 12

FAQ

Per consultare la tesi è necessario essere registrati e acquistare la consultazione integrale del file, al costo di 29,89€.
Il pagamento può essere effettuato tramite carta di credito/carta prepagata, PayPal, bonifico bancario.
Confermato il pagamento si potrà consultare i file esclusivamente in formato .PDF accedendo alla propria Home Personale. Si potrà quindi procedere a salvare o stampare il file.
Maggiori informazioni
Ingiustamente snobbata durante le ricerche bibliografiche, una tesi di laurea si rivela decisamente utile:
  • perché affronta un singolo argomento in modo sintetico e specifico come altri testi non fanno;
  • perché è un lavoro originale che si basa su una ricerca bibliografica accurata;
  • perché, a differenza di altri materiali che puoi reperire online, una tesi di laurea è stata verificata da un docente universitario e dalla commissione in sede d'esame. La nostra redazione inoltre controlla prima della pubblicazione la completezza dei materiali e, dal 2009, anche l'originalità della tesi attraverso il software antiplagio Compilatio.net.
  • L'utilizzo della consultazione integrale della tesi da parte dell'Utente che ne acquista il diritto è da considerarsi esclusivamente privato.
  • Nel caso in cui l’utente che consulta la tesi volesse citarne alcune parti, dovrà inserire correttamente la fonte, come si cita un qualsiasi altro testo di riferimento bibliografico.
  • L'Utente è l'unico ed esclusivo responsabile del materiale di cui acquista il diritto alla consultazione. Si impegna a non divulgare a mezzo stampa, editoria in genere, televisione, radio, Internet e/o qualsiasi altro mezzo divulgativo esistente o che venisse inventato, il contenuto della tesi che consulta o stralci della medesima. Verrà perseguito legalmente nel caso di riproduzione totale e/o parziale su qualsiasi mezzo e/o su qualsiasi supporto, nel caso di divulgazione nonché nel caso di ricavo economico derivante dallo sfruttamento del diritto acquisito.
L'obiettivo di Tesionline è quello di rendere accessibile a una platea il più possibile vasta il patrimonio di cultura e conoscenza contenuto nelle tesi.
Per raggiungerlo, è fondamentale superare la barriera rappresentata dalla lingua. Ecco perché cerchiamo persone disponibili ad effettuare la traduzione delle tesi pubblicate nel nostro sito.
Per tradurre questa tesi clicca qui »
Scopri come funziona »

DUBBI? Contattaci

Contatta la redazione a
[email protected]

Ci trovi su Skype (redazione_tesi)
dalle 9:00 alle 13:00

Oppure vieni a trovarci su

Parole chiave

coniche
eccentricità
ellissi
insegnante
iperbole
liceo
parabola
professore
scuola
stage

Tesi correlate


Non hai trovato quello che cercavi?


Abbiamo più di 45.000 Tesi di Laurea: cerca nel nostro database

Oppure consulta la sezione dedicata ad appunti universitari selezionati e pubblicati dalla nostra redazione

Ottimizza la tua ricerca:

  • individua con precisione le parole chiave specifiche della tua ricerca
  • elimina i termini non significativi (aggettivi, articoli, avverbi...)
  • se non hai risultati amplia la ricerca con termini via via più generici (ad esempio da "anziano oncologico" a "paziente oncologico")
  • utilizza la ricerca avanzata
  • utilizza gli operatori booleani (and, or, "")

Idee per la tesi?

Scopri le migliori tesi scelte da noi sugli argomenti recenti


Come si scrive una tesi di laurea?


A quale cattedra chiedere la tesi? Quale sarà il docente più disponibile? Quale l'argomento più interessante per me? ...e quale quello più interessante per il mondo del lavoro?

Scarica gratuitamente la nostra guida "Come si scrive una tesi di laurea" e iscriviti alla newsletter per ricevere consigli e materiale utile.


La tesi l'ho già scritta,
ora cosa ne faccio?


La tua tesi ti ha aiutato ad ottenere quel sudato titolo di studio, ma può darti molto di più: ti differenzia dai tuoi colleghi universitari, mostra i tuoi interessi ed è un lavoro di ricerca unico, che può essere utile anche ad altri.

Il nostro consiglio è di non sprecare tutto questo lavoro:

È ora di pubblicare la tesi