iv
ABSTRACT
Nanotechnology is any technology which studies and exploits phenomena and materials that
only occur at the scale of single atoms and small molecules: the nanometer scale. At this small
scale, nanomaterials display unique physical and chemical features that lead to new properties
depending on the size. When it decreases, in fact, the surface/volume ratio increases
considerably, giving nanostructure unique optical, mechanical, photochemical, electronic and
magnetic properties not seen at the bulk scale, which makes them attractive for a wide range
of applications, such as environmental monitoring, detection of pathogens, proteomics,
genomics, drug delivery, catalysis and bioanalysis.
Within nanomaterials, nanoparticles have received great interest due to their attractive
electronic, optical, thermal, catalytic properties and potential application in the fields of
physics, chemistry, biology, medicine, and material sciences. Nanoparticles are clusters of a
few hundred to a few thousand atoms sized between 1 and 100 nanometers, that behave as
whole units in terms of transport and properties. They can be composed of a single constituent
material (metal, semiconductor or oxide) or be a composite of several materials and can be
realized in a variety of shapes, morphologies and phases.
“Biomarker” can be defined as a characteristic that is objectively measured and evaluated as
an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention. As the definition suggests, there are many types of biomarkers,
including biochemical markers, physiologic markers, anatomic markers, histological markers
and physical markers. They can be used in clinical practice to identify risk for or diagnose a
disease, assess disease severity or progression, predict prognosis, or guide treatment. Tumor
markers are substances, most often proteins, that can be found in the blood or urine when
cancer is present. They can be products of the cancer cells themselves, or made by the body in
response to cancer or other conditions.
v
What links biomarker analysis to nanotechnology is the possibility to modify and improve the
standard analytical methods by the introduction of nanosystems acting for example as carriers
for molecules, tracers to be detected, electron transfer mediators or catalysts of
electrochemical reactions.
In this work the attention has been focused on the analysis of an important tumor marker,
protein CA 15-3, essential to monitor breast cancer treatments.
Breast cancer is the most common cancer diagnosed in women. More than 1 million women
worldwide are diagnosed with breast cancer each year. CA 15-3 is a glycoprotein mainly used
to watch patients with breast cancer. In fact, elevated blood levels are found in less than 10%
of patients with early disease and in about 70% of patients with advanced disease. The normal
level is usually less than 30 U/mL (units/milliliter), but levels as high as 100 U/mL can
sometimes be seen in women who do not have cancer. The CA 15-3 test is performed to aid
physicians in the monitoring of treatment of women with invasive breast malignancies.
It can also be used to diagnose recurrence of the disease following first-line therapy. By using
the measurements obtained from the CA 15-3 test the physicians can help to determine if the
patient is responding to treatment or if additional treatment or testing is required.
The Enzyme-Linked Immunosorbent Assay (ELISA) is the technique most commonly used
by molecular biologists for biomarker detection and quantification. ELISA tests are based on
the principle of a solid phase enzyme-linked immunosorbent assay using the spectroscopic
detection of a colored reagent. The assay system utilizes a monoclonal antibody directed
against a distinct antigenic determinant on the intact biomarker antigen molecule and used for
solid phase immobilization (on the microtiter wells). A secondary antibody conjugated to an
enzyme is used as signal generator. The test sample is allowed to react sequentially with the
two antibodies, resulting in the antigen molecules being sandwiched between the solid phase
and enzyme-linked antibodies.
Gold nanoparticles (AuNPs) have gained attention in the last years due to the unique
structural, electronic, magnetic, optical and catalytic properties which have made them a very
attractive material for biosensor systems and bioassays. The combination of biomolecules
with AuNPs provides interesting tools for several biological components. The use of AuNPs
for biomarker analysis is particularly explored, for example, by optical based detection
technologies due to their extremely strong absorption and light scattering in the plasmon
resonance wavelength regions and certain fluorescence properties. The excellent
electroactivity of these nanomaterials allows also the use of either electrical or
vi
electromechanical or electrochemical techniques as detection device, reaching low limits of
detection (LOD). Due to their excellent biocompatibility AuNPs are also finding increasing
application as enzyme enhancers, nanoscale building blocks and immunohistochemical
probes.
In this work a well established analytical format, the optical ELISA test, was combined with a
novel concept of controlled AuNPs bioconjugation procedures aiming to improve the
analytical performances without increasing significantly the complexity of the procedure.
AuNPs have been adopted as multi-enzyme carriers in the enzyme-based immunoassay for
the analysis of CA15-3 biomarker, which generated an amplified optical read-out while
keeping low background signals.
In addition to the standard spectrophotometric detection format, normally adopted in ELISA
tests, an electrochemical detection has also been developed. This consisted on measuring the
current signal generated applying a fixed potential during the reduction of the enzyme
substrate, oxidized by the Horseradish Peroxidase (HRP) signaling enzyme in the last step of
the ELISA. Screen-printed electrodes with silver pseudo-reference, carbon auxiliary and
carbon working electrodes all-built-in, were used for the current measurements in a
voltammetric cell. The current signal resulted directly proportional to the antigen
concentration (CA 15-3) and hence it can be used as an alternative tool to quantify unknown
samples.
The presence of AuNPs confirmed the higher assay sensitivity due to the signal enhancement,
already obtained with the optical detection.
This simple concept of using AuNPs as effective signal enhancer could be easily exploited to
improve the analytical performances of commercially available ELISA tests, especially those
requiring high accuracy to facilitate physicians in deciding the appropriate medical treatment.
vii
RIASSUNTO
La nanotecnologia è una branca della scienza applicata e della tecnologia che studia e sfrutta i
fenomeni e i materiali esistenti solamente su scala atomica o molecolare: la scala
nanometrica. In questi ordini di grandezza, i nanomateriali mostrano caratteristiche fisiche e
chimiche uniche che portano a nuove proprietà a seconda delle dimensioni. Quando queste si
riducono, infatti, il rapporto superficie/volume aumenta notevolmente, conferendo alle
nanostrutture proprietà ottiche, meccaniche, fotochimiche, elettroniche e magnetiche non
osservabili su scala macroscopica, il che le rende interessanti per una vasta gamma di
applicazioni, quali ad esempio il monitoraggio ambientale, l'individuazione di agenti
patogeni, la proteomica, la genomica, la somministrazione di farmaci, la catalisi e l‟analisi
biologica.
Tra i nanomatriali, le nanoparticelle hanno ricevuto grande interesse grazie alle loro proprietà
elettroniche, ottiche, termiche, catalitiche esclusive, e alle potenziali applicazioni nel campo
della fisica, chimica, biologia, medicina, e scienze dei materiali. Le nanoparticelle sono
aggregati di poche centinaia fino a qualche migliaia di atomi, di dimensioni comprese tra 1 e
100 nanometri (nm), che si comportano come unità intere in termini di trasporto e proprietà.
Possono essere composte da un unico materiale costituente (metallo, semiconduttore o ossido)
o da diversi materiali e venire realizzate in una varietà di forme, morfologie e fasi.
Si definisce "biomarker" una caratteristica che è oggettivamente misurata e valutata come un
indicatore di processi biologici fisiologici, processi patogeni, o di risposte farmacologiche a
un intervento terapeutico. Come suggerisce la definizione, esistono diversi tipi di biomarkers
biochimici, fisiologici, anatomici, istologici e fisici. Essi possono essere utilizzati nella pratica
clinica per l‟identificazione del rischio o per la diagnosi di una patologia, per valutarne la
gravità o la progressione, prevedere la prognosi, o per condurre una terapia. I markers
tumorali sono sostanze, molto spesso proteine, che possono ritrovarsi nel sangue o nelle urine
viii
di un paziente affetto da cancro; esse vengono prodotte dalle stesse cellule neoplastiche, o
dall'organismo in risposta al tumore o ad altre condizioni fisiopatologiche.
Il punto di contatto tra nanotecnologia e biomarkers è rappresentato dalla possibilità di
modificare e migliorare i metodi standard di identificazione e misurazione di questi ultimi,
con l'introduzione di nanosistemi utilizzabili, ad esempio, come trasportatori di molecole,
marcatori, mediatori di trasferimento di elettroni o catalizzatori di reazioni elettrochimiche.
In questo lavoro l'attenzione è stata posta sull'analisi di un importante marcatore tumorale, la
proteina CA 15-3, essenziale per monitorare le terapie del carcinoma alla mammella.
Il tumore della mammella è il cancro più comunemente riscontrato nelle donne. Ogni anno,
infatti, questa patologia viene diagnosticata in più di 1 milione di donne in tutto il mondo.
CA 15-3 è una glicoproteina utilizzata principalmente per valutare i pazienti affetti da tale
patologia. Concentrazioni plasmatiche elevate sono presenti in meno del 10% dei pazienti con
malattia precoce e in circa il 70% dei pazienti con malattia avanzata. Valori di riferimento
sono solitamente inferiori a 30 U/mL (unità/ml), ma a volte possono essere riscontrate
concentrazioni pari a 100 U/mL in donne non affette da cancro. Il dosaggio del CA 15-3 viene
comunemente effettuato per permettere ai clinici di monitorare e valutare adeguatamente la
terapia in donne affette da neoplasie invasive, ed eventualmente suggerire la necessità di
terapie supplementari oppure ulteriori analisi, qualora la risposta non fosse positiva.
Questo test può essere usato anche per diagnosticare un‟eventuale recidiva della malattia, che
può verificarsi in seguito a una terapia.
Il dosaggio ELISA (Enzyme-Linked Immunosorbent Assay) è la tecnica più comunemente
usata dai biologi molecolari per l‟individuazione e la quantificazione di biomarkers. I test
ELISA in generale si basano sul principio del saggio immunoenzimatico su fase solida, con
rilevazione spettroscopica di un reagente colorato. Tale sistema utilizza un anticorpo
monoclonale immobilizzato su un supporto solido (i pozzetti della piastra ELISA), e diretto
contro un determinante antigenico distinto sulla molecola dell‟antigene (biomarker).
Un anticorpo secondario coniugato con un enzima viene invece utilizzato come generatore di
segnale. Il campione viene lasciato reagire in maniera sequenziale con i due anticorpi, in
questo modo le molecole di antigene rimangono intrappolate e immobilizzate tra la fase solida
e gli anticorpi legati all‟enzima.
Le nanoparticelle d‟oro (AuNPs) hanno assunto una certa rilevanza negli ultimi anni a causa
delle loro particolari proprietà strutturali, elettroniche, magnetiche, ottiche e catalitiche, che le
hanno rese un materiale molto interessante per i sistemi di biosensori e i metodi di analisi
ix
biologica. La combinazione di biomolecole con AuNPs offre strumenti interessanti per
diverse componenti biologiche. L'uso di AuNPs per l‟analisi di biomarkers è particolarmente
sfruttato, per esempio, dalle tecnologie basate su rilevamento ottico, a causa della loro
capacità di assorbimento e dispersione della luce estremamente forte e delle proprietà di
fluorescenza. L‟eccellente elettroattività di questi nanomateriali permette anche l'utilizzo di
tecniche sia elettriche, sia elettromeccaniche, sia elettrochimiche come metodi di rilevazione,
raggiungendo limiti di rilevabilità (LOD) molto bassi. Grazie alla loro eccellente
biocompatibilità, le AuNPs stanno trovando impiego sempre più frequentemente anche come
amplificatori del segnale enzimatico, come materiali di partenza nanometrici e come sonde
immunoistochimiche.
In questo progetto di tesi, un modello analitico ben definito, il test ELISA, è stato combinato e
integrato con una procedura di coniugazione di biomolecole con nanoparticelle d‟oro, con
l‟obbiettivo di migliorare le prestazioni analitiche senza aumentare in modo significativo la
complessità della procedura.
Le AuNPs sono state usate come trasportatori multi-enzima nel dosaggio ELISA per l'analisi
del biomarker CA15-3, che ha generato un segnale ottico amplificato, mantenendo “segnali di
fondo” trascurabili.
Oltre al formato standard di rilevazione spettrofotometrica, normalmente utilizzata nei test
ELISA, è stato sviluppato un metodo di rilevazione elettrochimica. Questo consiste nel
misurare il segnale di corrente generato applicando un potenziale fisso durante la riduzione
del substrato dell'enzima, ossidato dall‟enzima perossidasi di rafano (HRP) nell‟ultimo
passaggio dell‟ELISA. Per misurare il flusso di corrente all‟interno della cella voltammetrica
sono stati utilizzati elettrodi serigrafati, composti da un elettrodo di riferimento in argento, un
elettrodo di lavoro in carbonio e un elettrodo ausiliario anch‟esso in carbonio.
Il segnale di corrente è risultato direttamente proporzionale alla concentrazione dell‟antigene
(CA 15-3) e, quindi, può essere usato come espediente alternativo per la quantificazione di
campioni incogniti.
La presenza delle AuNPs ha confermato una maggiore sensibilità del saggio, dovuta
all‟amplificazione del segnale, già ottenuta con la rilevazione ottica.
Questo semplice utilizzo di AuNPs in qualità di amplificatori efficaci del segnale, potrebbe
essere facilmente sfruttato per migliorare le prestazioni analitiche dei test ELISA disponibili
in commercio, in particolare quelli che richiedono elevata precisione per agevolare i clinici
nella scelta della terapia adeguata.
Chapter 1 - GENERAL INTRODUCTION 1
Chapter 1 - GENERAL INTRODUCTION
1.1 Clinical analysis and biomarkers
1.1.1 Clinical analysis: an overview
The purpose of clinical laboratories is the provision of accurate and precise test results for
patient care in a short and acceptable time. In general terms laboratory tests can be divided
into three large classes depending upon the clinical use of the data: a) screening tests, b)
monitoring tests, c) diagnostic tests.
A) Screening tests aim at separating normal from abnormal subjects. Characteristically they
are semiquantitative or quantitative and should have low false-negative rates. In other words
they are designed not to miss abnormal values. For the most part they are nondiagnostic and if
possible require additional confirmatory studies. Typical examples of such screening tests are
the automated blood count (without a blood film examination), a dipstick urinalysis, or a stool
test for occult blood. If a screening test is positive, the diagnostic test can confirm or exclude
the presence of a disease or condition.
B) Monitoring tests are quantitative and must be very precise in order to accomplish their
goals. Blood glucose testing in diabetics is probably the most widely employed monitoring
procedure. Errors can lead to the mistaken injection of insulin or conversely to the infusion of
excess glucose in the diabetic patient. Another common example of a laboratory monitoring
procedure is the prothrombin time when used to monitor oral anticoagulation.
Therapeutic drug monitoring is yet another field which has grown rapidly in the last few
years. Again, errors in testing may lead to significant clinical problems.
C) Diagnostic tests can be either qualitative or quantitative but above all they must have very
low false-positive rates. An example of a qualitative diagnostic test is a microbiologic culture
and sensitivity testing of the cultured organism. Diagnostic immunology tests are also
frequently qualitative in nature. Think, for example, of immunologic tests for syphilis or
human immunodeficiency virus (HIV). There are many quantitative tests. Examples include
Chapter 1 - GENERAL INTRODUCTION 2
low granulocyte counts which define neutropenia, low platelet counts defining
thrombocytopenia, and low or high erythrocyte counts leading to diagnoses of anemia or
polycythemia. Errors in such tests can lead to significant clinical misadventures by either
1
withholding or providing inappropriate therapy.
1.1.2 The role of biomarkers in clinical analysis
Biomarker is a much broader term, including everything from binding affinity, to genotype, to
measures that predict clinical outcome. A National Institutes of Health biomarker working
group has defined a biomarker as “a characteristic that is objectively measured and evaluated
as an indicator of normal biologic processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention”. Body temperature, for example, is a well-known
biomarker for fever, and blood pressure is considered an effective biomarker for risk of
stroke. Cholesterol is accepted as a biomarker of cardiovascular risk. As the definition
suggests, there are many types of biomarkers, including biochemical, physiologic, anatomic,
2,3,4
histologic and physical markers. Although the term “biomarker” is relatively new,
biomarkers have been used in pre-clinical research and clinical diagnosis for a considerable
time. In fact they can be used in clinical practice to identify risk for or diagnose a disease,
separate the more serious patients from the less serious ones, assess disease severity or
progression, predict prognosis, or guide treatment. In drug development biomarkers may be
used to help determine how a drug works in the body, to determine a biologically effective
dose of a drug, to help assess whether a drug is safe or effective, and to help identify patients
most likely to respond to a treatment, or are least likely to suffer an adverse event when
treated with a drug. Biomarkers can sometimes be used as part of the approval process for a
4,5
drug or treatment, to help make a decision.
1.1.3 Tumor markers
Within the last decade a large number of laboratory tests have become available which
collectively have been labeled "tumor markers." These studies have been used for screening
1
as well as diagnostic and monitoring purpose.
Chapter 1 - GENERAL INTRODUCTION 3
1.1.3.1 Definition of tumor marker
Tumor marker is a substance that can be found in the body when cancer is present or in
progress. It is usually found in the blood or urine and it can be a product of the cancer cells
6
themselves or of the body in response to cancer or other conditions. There are many different
tumor markers: most of them are generic proteins, but they can be also hormones, enzymes,
metabolites, immunoglobulins, tumor associated antigens, oncogenes and other substances
that are helpful in the detection and diagnosis of certain cancers; some of them are seen only
in a single type of cancer, while others can be found in many types of cancer. Sometimes non-
cancerous diseases can also cause levels of certain tumor markers to be higher than normal,
and not every person with cancer may have higher levels of a tumor marker. For these
reasons, currently no tumor marker has characteristics such as sensitivity and specificity to be
used by itself in early diagnosis and/or mass screening of cancer. Instead, in combination with
other instrumental investigations, they can help in the differential diagnosis between benign
6,7,8,9
and malignant and in the identification of relapse.
1.1.3.2 Classification of tumor markers
8
There are four main groups of tumor markers:
1) Structural molecules: Structural molecules are commonly found on the cell surface. Hence,
they are of little value in identifying tumor type. Examples of tumor makers which are
structural molecules are carcinoembryonic antigen (CEA), mucins like CA 19-9, CA 15-3 and
CA125, β-2-microglobulin and cytokeratins like CYFRA 21-1 and tissue polypeptide antigen.
2) Secretion products and enzymes: Examples of secretion products and enzymes include α-
foetoprotein (AFP), human chorionic gonadotrophin (HCG), paraproteins and Bence-Jones
protein, prostate-specific antigen (PSA), neuron-specific enolase (NSE) and placental-like
alkaline phosphatase.
3) Non-specific markers of cell turnover: These include neopterin and thymidine kinase.
4) Cellular markers: Examples of cellular markers are Philadelphia chromosome, oncogenes,
tumor suppressor genes, oestrogen receptor, progesterone receptor, epidermal growth factor
receptor and c-erbB-2.